Computational study of experience-dependent plasticity in adult rat cortical barrel-column.
نویسندگان
چکیده
We model experience-dependent plasticity in the adult rat S1 cortical representation of the whiskers (the barrel cortex) which has been produced by trimming all whiskers on one side of the snout except two. This manipulation alters the pattern of afferent sensory activity while avoiding any direct nerve damage. Our simplified model circuitry represents multiple cortical layers and inhibitory neurons within each layer of a barrel-column. Utilizing a computational model we show that the evolution of the response bias in the barrel-column towards spared whiskers is consistent with synaptic modifications that follow the rules of the Bienenstock, Cooper and Munro (BCM) theory. The BCM theory postulates that a neuron possesses a dynamic synaptic modification threshold, thetaM, which dictates whether the neuron's activity at any given instant will lead to strengthening or weakening of the synapses impinging on it. However, the major prediction of our model is the explanation of the delay in response potentiation in the layer-IV neurons through a masking effect produced by the thresholded monotonically increasing inhibition expressed by either the logarithmic function, h(x) = mu log(1 + x), or by the power function, h(x) = mu x(0.8-0.9), where mu is a constant. Furthermore, simulated removal of the supragranular layers (layers II/III) reduces plasticity of neurons in the remaining layers (IV-VI) and points to the role of noise in synaptic plasticity.
منابع مشابه
Effect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex
Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...
متن کاملTheory for normal and impaired experience-dependent plasticity in neocortex of adult rats.
We model experience-dependent plasticity in the cortical representation of whiskers (the barrel cortex) in normal adult rats, and in adult rats that were prenatally exposed to alcohol. Prenatal exposure to alcohol (PAE) caused marked deficits in experience-dependent plasticity in a cortical barrel-column. Cortical plasticity was induced by trimming all whiskers on one side of the face except tw...
متن کاملNeuronal response properties of somatosensory cortex (layer IV) are modulated following experience dependent plasticity in c-fiber depleted rats
Previous studies have shown that the receptive field properties, spontaneous activity and spatio-temporal interactions of low-threshold mechanical somatosensory cells in the barrel cortex are influenced by C-fibers. In this study, we examined the effect of C-fiber depletion on response properties of barrel cortex neurons following experience dependent plasticity. Methods: In this study, exte...
متن کاملModeling Plasticity in Rat Barrel Cortex Induced by One Spared Whisker
We have extended the previous model [1,2] of experience-dependent plasticity in the rat cortical representation of the whiskers (the barrel cortex) to include excitatory and inhibitory interactions within a barrel-column. Recent experimental observations [3] indicate that after trimming all but one whisker on one side of the rat snout, the spared and deprived whisker dominance distribution was ...
متن کاملExperience-dependent plasticity of adult rat S1 cortex requires local NMDA receptor activation.
The effect of blocking NMDA glutamate receptors in adult rat cortex on experience-dependent synaptic plasticity of barrel cortex neurons was studied by infusing D-AP5 with an osmotic minipump over barrel cortex for 5 d of novel sensory experience. In acute pilot studies, 500 microM D-AP5 was shown to specifically suppress NMDA receptor (NMDAR)-dependent responses of single cells in cortical lay...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Network
دوره 10 4 شماره
صفحات -
تاریخ انتشار 1999